THEORY OF THE TEMPERATURE RELAXATION
OF AN ELECTRON-ION PLASMA IN A HIGH-FREQUENCY
ELECTRIC AND CONSTANT MAGNETIC FIELD

V. P. Silin and V. T. Tikhonchuk

The effective collision frequency of electrons and ions which leads to temperature equaliza-
tion in a plasma in a constant magnetic field and a weak high-frequency electric field when
the gyroscopic radius of the electrons is less than the Debye screening radius is determined.
The corresponding values of the relaxation time are determined over a wide range of values
of the ratio between the electron and ion temperatures, over a wide range of values of the
magnetic and electric fields, and also as a function of the frequency of the external electric
field.

Temperature equalization of the electrons and jons of a plasma in a high constant magnetic field
when the Debye screening radius is greater than the gyroscopic radius of the particles has been investi-
gated in [1, 2]. On the basis of these investigations a kinetic equation with integral collisions was proposed
which takes into account the effect of the magnetic field on the motion of the colliding particles [3]. In this
paper we consider the problem of the effect of a high-frequency electric field on the temperature relaxa-
tion time of a magnetized plasma.

As shown in [4], it is possible for growing oscillations to build up in a magnetized plasma in a strong
high-frequency electric field. Hence, electric fields in which the drift velocity of the particles becomes
greater than their thermal velocity are not considered helow.

The investigation is made over a wide range of frequencies of the external electric field wy > vej (Vg
is the electron-ion collision frequency, an expression for which will be obtained below). In the low-frequency
region w; < Vg the drift velocity of the electrons along the magnetic field will be determined not by the fre-
quency w, but by the electron collision frequency, which leads to another expression for the conductivity
along the magnetic field,

Finally, it is shown that the collision time for collisions which occur due to Coulomb interaction, ob-
tained in [2], still holds when the plasma is situated in an external high-frequency electric field and over
a certain range of impact parameters is decisive.

1. The basis of our analysis is the kinetic equation (see [5])
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Here f, is the distribution function of particles of type a, Uy, is the screening potential of Coulomb
interaction, and P; and R, are the momentum and coordinate at the instant of time t+ 7 of the particle a,
which undergoes Coulomb interaction with the particle b, if at the instant of time t its momentum and co-
ordinate have the valuesp, andr,.

In order to obtain the limit of the collision time due to Coulomb interaction in accordance with [2], we
use for P, and R, not the zeroth but the first approximation to the Coulomb interaction:

tdr

1 PN
R, (E+ 7, £ Py Toe By) =¥ %—-5;; S P, () dt
i

R,=R{ + RY P,=P{ +P{
0 = a a s e
PO+ T, Tgy Py Ty By) = b(b-p) —bxp, sin Qv — bx (bxp,}cos QT

i+
Leg \ DBEQE) —bxEE)sinQ, ¢+ 17— 1) —bx bxE () cos Q-+ v—1)] dt
t

T

t4
PP (¢ 47, v By 1y D) =\ [b(beFer) —bix T sin (¢ + 7 —) —bx (bxfar) cos R (¢ + 7 —1)] &t
i

— 0 © Opn o _ B _ B
P (8) = RO Ug((Re'—RYD) Q= — h——g

Since momentum relaxation occurs much more rapidly than temperature relaxation, we can take as
the distribution functions the Maxwell functions of argument

Po—ea § (b(b-E(¥) —bxE()sinQ (¢t — ') —bx (bx B () cos Q¢ — ¢)] dt'

e

Multiplying Eq. {(1.1) by
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and integrating over the momenta of the particles @ , we obtain the temperature relaxation equation.

Before taking the integrals on the right side of the equation, we will discuss the effect of Coulomb
interaction on the motion of the particles. Corrections of the first approximation of the Coulomb interac~
tion to Rg were obtained as in [2], so that the characteristic collision time which arises due to taking into
account the effect of Coulomb interaction

Tonax () == k7 (rfi-r)’

obtained in [2], is unchanged, Hence, the integral with respect to. 7 in (1.1) must be taken from 7T max ®
to 0. Henceforth we can neglect the small additive corrections due to the effect of the Coulomb field on the
momenta of the colliding particles. This is justified for the assumed logarithmic accuracy of the calcula-
tions.

To obtain the final expression we must now take the integrals on the right side of the temperature
relaxation equation. We will take the time dependence of the electric field in the form

B () =E,cos o,

Proceeding as, for example, in [5], this equation can be written in the form
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where T is the temperature measured in energy units, kmm:rD‘i, Kmax =Tmin~" 28 in the usual Lan-
dau collision integral, 8 is the angle between the vectors b and k, and
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Jy5 is a Bessel function of order n.
We will average the expression obtained over an oscillation period of the external field. As can be
seen from (1.2), due to oscillations of the Bessel and trigonometric functions in the regions
kpy cos 8 > 1, kpy sin 8 >1
the integral is small, so that integration can he carried out over the regions where
koy cos 8T 1, ko, sin8C1

In these regions we can expand the Bessel and trigonometric functions in series, and confining our-
selves to the first terms of the expansion, we can carry out the above averaging. As a result, if the plasma
consists of electrons and one type of ion, we obtain the following expression:
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Integration with respect tow and t is only carried out in those regions where
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Here vy is the drift velocity of the particles in the electric field. The quantities Vg | and vy can
be obtained from the equations of motion of the particles in electric and magnetic fields:
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2. Bearing in mind the large logarithmic expressions, we will only retain the leading terms, i.e., we
will neglect quantities of the order of unity in comparison with the logarithmic and double logarithmic ex~
pressions., We will write (1.3) in the form
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T is the temperature relaxation time, Oik is the conductivity tensor,
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where the upper limit of integration with respect to t is the least of the following three expressions:
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In expressions (2.2) and (2.3) integration is carried out only in those regions of variation of w and t
where the following relation holds:
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We will consider only the first term of expression (2.1) proportional to the temperature difference.
The second term is related to the heat dissipated in the plasma due to the action of the electric field E.
Hence, the conductivity tensor o) agrees with that calculated in [5], where the conductivity of a magnetized
plasma in a weak high-frequency electric field was considered.

The formal difference between expressions (2.2) and (2.3) and the corresponding expressions given in
[2], where temperature relaxation in a magnetized plasma was considered in the absence of an electric field
consists of the presence of the additional limitation (2.4), which takes into account the upper limit of the
interaction time due to particle drift in the electric field. Note that this limitation is important for a fre~
quency of the electric field wy <Qg and vy > vrp;.

H
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For an unmagnetized plasma (pg > rp) We obtain

L, = ln (rp/rmin)
For a magnetized plasma (pg < rp

L, = In (p, / rmin)

In the first case no double logarithmic expressions occur; in the second case double logarithmic cor-
rections occur due to (2.3). As stated above, in the regions

0>, vy > v

the effect of the electric field is neglighle, so that we have the expressions obtained in [2]. In the opposite
case we have the new expressions obtained here.

To simplify the equations we will introduce the following notation:
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It should be noted that the first six logarithms are linearly independent while the remaining three can
be expressed linearly in terms of the first six.

Using the above notation,we can write the expressions obtained for 6L, as follows:
In the regions vgj< wy< €4 and 2§ < Wy < Qg
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In the low-frequency region vei < w, < 2; in addition to (2.5) we have
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In the low-frequency region vg; < wy < 2j no double logarithmic expressions occur.

In the frequency regionQj < w; < Q, in addition to (2.5) we also have the following expressions:
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rp>vr. | Q> vE /04> pi, rohps, pe > rovrd® [ vE?
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Common to the expressions (2.7) is the fact that in the region of the impact parameters vg/wy >r > Pe
the interaction time is limited by particle drift in the electric field. This is due to the fact that in (2.7) in

all the expressions p, > ryvyi’/vg®. Inthe opposite case we have
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Common to expressions (2.8) is the fact that in the range of impact parameters
rovn  lvg? > > p,
the interaction time is limited by the effect of Coulomb acceleration of the particles, and in the range of
impact parameters
vg [ g >>r > 1, vpi® | vg?
the interaction time is limited by particle drift in the electric field.

3. The results obtained hold, as stated above, for values of the electric field for which the particle
drift velocity v is less than the thermal velocity of the electrons. However, it follows from results ob-
tained by Andreev and Kiriy, kindly communicated to the authors prior to publication, that when VE< VTe,
parametric resonance is possible if the frequency of the electric field is close to the frequencies of elec-
tron plasma oscillations in a constant magnetic field:

(0,00 =y {(0r" + Q) + oz + Q) — dor Q. cos®8l%:}

Ope =(4n &n, / m)"

Here wyg is the Langmuir frequency of the electrons, and # is the angle between the direction of
propagation of the oscillations and the direction of the constant magnetic field B.
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In a magnetized plasma the upper branch lies within the limits
Q. <o, <(QS +ord)h
while the lower branch lies within the limits
Qe llor® + 92 / (or® + QI < 0, <oy,
Hence, the results obtained must be used in the frequency ranges
oL ok
Ve <0 <Ly Q< @p <L, (W)
ml:e < @y < Qe, (932 + mLez)v‘ < [ 1Y

(3.1)

These are the regions in which parametric resonance is impossible. In the parametric-resonance
regions, for example, in the lower branch w,, the results obtained only make sense if the electric field E;
is less than the threshold field E,, given by

B2 a Vea®Li Q2

LI— T4 )1 cos B (o,
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where x is the angle between the directions of the vectors B and Ey, while § (w,) is given by the expres-
sion

0 (01,2 + 0,2 — o)

c0s? 8 (@) = 5,703
& e

The expression derived holds in the long-wave limit (wg < ;) in a magnetized plasma (wg=kwy;irp
is the ion-acoustic oscillation frequency). More detailed expressions for the thresholds can be found in
the above-mentioned paper after publication.

4. The above investigation shows that in a magnetized plasma in a high~frequency electric field
double logarithmic corrections to the temperature relaxation time occur, which depend on the intensity
and frequency of the electric field. This dependence was investigated with the following limitations:

1) The drift velocity of the particles in the electric field doe not exceed the thermal velocity of the
electrons (vg < VTe); this is a limitation on the value of the electric field,

2} The cyclotron radius of the electrons should not be greater than that of the ions {pe < pj), and the
thermal velocity of the ions should be less than the thermal velocity of the electrons (v < vp.); this is a
limitation on the ratio of the electron and ion temperatures, since the last two inequalities can be written
as

m, T, m
> >
m, Te m;
(z is the charge on the fon in units of e)

3) The frequency of the electric field lies in the ranges which satisfy inequalities (3.1).

Note that under these conditions the dependence on the frequency and the electric field appears in the
temperature relaxation time only when w; < @,. Inthe opposite case the electric field has no effect on the

first term of Eq. (2.1).
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